Các kĩ thuật "functional" ngẫu nhiên Hiển vi siêu phân giải

Hiển vi định vị (Localization microscopy)

Hiển vi định vị đơn phân tử (Single-molecule localization microscopy - SMLM) là kĩ thuật hiển vi xác định vị trí các hạt phát quang rời rạc bằng cách fit ảnh của chúng với hàm mở rộng điểm PSF.Thông thường, độ rộng của PSF (~ 250 nm) giới hạn độ phân giải. Tuy nhiên, đối với hạt rời rạc, có thể xác định vị trí của hạt với độ chính xác chỉ phụ thuộc vào cường độ phát quang của hạt theo phương trình (2).

Δ l o c ≈ Δ N {\displaystyle \Delta \mathrm {loc} \approx {\frac {\Delta }{\sqrt {N}}}}    (2)

Với Δloc là độ chính xác của phép định vị, Δ là độ rộng nửa chiều cao của PSF và N là số photon thu được.Quá trình fit chỉ thực hiện được với các hạt phát quang rời rạc, tuy nhiên, các mẫu sinh học thường được đánh dấu với mật độ phân tử phát quang cao, vì vậy không thể thực hiện định vị khi tất cả các phân tử cùng phát quang một lúc.Kĩ thuật SMLM vượt qua khó khăn này bằng cách chỉ kích hoạt một tập hợp nhỏ các phân tử đánh dấu tại một thời điểm, định vị chúng sau đó khử hoạt chúng và kích hoạt một tập hợp khác.

Nói chung, kính hiển vi định vị làm việc với các phân tử phát quang. Các phân tử này phần lớn thời gian sẽ ở trạng thái tối - không phát quang. Chúng được kích hoạt sang trạng thái có thể phát quang bằng một nguồn laser công suất thấp. Một nguồn laser thứ hai kích thích các phân tử phát quang và khiến chúng bị tẩy quang hoặc chuyển về trạng thái tối, thường chỉ trong 10-100 ms. Photon huỳnh quang được ghi nhận bằng camera và tạo thành ảnh (bị mở rộng) của từng phân tử phát quang. Ảnh này có thể được fit và định vị phân tử với độ chính xác chỉ vài angstrom.[38][39] Quá trình được lặp lại hàng nghìn lần để tất cả các phân tử đều được kích hoạt và ghi ảnh. Máy tính sẽ sử dụng dữ liệu được phân tích để dựng lại ảnh siêu phân giải.

Phân tử đánh dấu dùng trong phương pháp này cần có thể phát quang rất mạnh để thu được độ phân giải tốt nhất. Do đó, chúng cần hấp thụ tốt ánh sáng kích thích và có hiệu suất lượng tử cao. Chúng cũng cần có tỉ số tương phản cao (tỉ số giữa số photon phát ra khi ở trạng thái bật và tắt). Ngoài ra, mật độ đánh dấu của phải thỏa mãn tiêu chuẩn Nyquist criteria.

Có nhiều loại hiển vi định vị khác nhau, được phân biệt chủ yếu dựa trên loại phân tử phát quang chúng sử dụng.

Kính hiển vi định vị sử dụng phương pháp SPDM

Single YFP molecule super-resolution microscopy using SPDMphymod

SPDM (Spectral Precision Distance Microscopy), là kĩ thuật hiển vi định vị được thực hiện lần đầu tiên vào năm 1997 cho phép xác định vị trí, khoảng cách và góc của các hạt "cô lập quang học" ("optically isolated" particles).[40][41][42]

"Cô lập quang học" tức là tại một thời điểm bất kì, chỉ có một hạt phát quang trong vùng giới hạn nhiễu xạ được ghi nhận (khoảng 200–250 nm đường kính). Việc này có thể thực hiện khi các phân tử trong vùng giới hạn nhiễu xạ có phổ phát xạ khác nhau. Kính hiển vi SPDM có độ phân giải quang học lớn hơn kính hiển vi thông thường vài lần.[43]

TMV Virus Super Resolution Light Microscopy

STORM, PALM and FPALM

Hiển vi dựng ảnh quang học ngẫu nhiên (Stochastic optical reconstruction microscopy - STORM), hiển vi định vị quang hoạt (photo activated localization microscopy - PALM) và hiển vi định vị quang hoạt huỳnh quang (fluorescence photo-activation localization microscopy - FPALM) là các kĩ thuật ảnh hiển vi siêu phân giải sử dụng phương pháp kích hoạt lần lượt các phân tử quang hoạt và định vị chúng để dựng ảnh có độ phân giải cao. Trong quá trình dựng ảnh, chỉ một tập nhỏ các phân tử được kích hoạt về trạng thái phát quang. Các phân tử này đủ phân tán để có thể phân giải được trên ảnh hiển vi huỳnh quang. Vị trí của mỗi phân tử được xác định bằng phép định tâm với độ chính xác cao. Sau đó chúng sẽ được khử hoạt và một tập khác được kích hoạt và định tâm. Quá trình này được lặp lại nhiều lần tới khí số phân tử phát quang được định vị đủ nhiều để dựng ảnh có độ phân giải cao. Ba phương pháp này được công bố độc lập trong một khoảng thời gian ngắn và có cùng nguyên lý. STORM ban đầu dùng phân tử màu Cy5 và Cy3 gắn với các axít nucleic hoặc protein,[44] PALM và FPALM dùng các protein phát quang có tính chất quang hoạt.[45][46] Về nguyên tắc, bất kì phân tử quang hoạt nào cũng có thể sử dụng được, và các loại phân tử và cách đánh dấu khác nhau đã được sử dụng trong phương pháp STORM. Bằng việc sử dụng chỉ một loại phân tử quang hoạt như Cy5,[47] STORM chỉ cần dùng một nguồn laser đỏ làm nguồn kích. Laser này đồng thời chuyển phân tử Cy5 về trạng thái tối[48][49] và sau đó quay lại trạng thái có thể phát quang. Nhiều loại chất mấu khác cũng được sử dụng cho STORM.[50][51][52][53][54][55] Ngoài ra, các cặp chất màu cũng được sử dụng. Trong cặp, một phân tử đóng vai trò hoạt tử (như Alexa 405, Cy2, và Cy3) phân tử còn lại là phân tử quang hoạt (như Cy5, Alexa 647, Cy5.5, và Cy7).[44][56][57] In this scheme, the activator fluorophore, when excited near its absorption maximum, serves to reactivate the photoswitchable dye to the fluorescent state. Multicolor imaging has been performed by using different activation wavelengths to distinguish dye-pairs based on the activator fluorophore used[56][57][58] or using spectrally distinct photoswitchable fluorophores either with or without activator fluorophores.[50][59][60] Photoswitchable fluorescent proteins can be used as well.[45][46][60][61] Highly specific labeling of biological structures with photoswitchable probes has been achieved with antibody staining,[56][57][58][62] direct conjugation of proteins,[63] and genetic encoding.[45][46][60][61]STORM has also been extended to three-dimensional imaging using optical astigmatism, in which the elliptical shape of the point spread function encodes the x, y, and z positions for samples up to several micrometers thick,[57][62] and has been demonstrated in living cells.[60] To date, the spatial resolution achieved by this technique is ~20 nm in the lateral dimensions and ~50 nm in the axial dimension and the temporal resolution is as fast as 0.1–0.33s.[cần dẫn nguồn]

Liên quan

Tài liệu tham khảo

WikiPedia: Hiển vi siêu phân giải http://blog.everydayscientist.com/?p=184 http://blog.everydayscientist.com/?p=354 http://apnews.excite.com/article/20141008/nobel-ch... http://www.falstad.com/diffraction/ http://www.nature.com/nmeth/journal/v5/n6/pdf/nmet... http://www.nytimes.com/2014/10/09/science/nobel-pr... http://www.olympusmicro.com/primer/techniques/near... http://link.springer.com/article/10.1140%2Fepjh%2F... http://www.tandfonline.com/doi/abs/10.1080/0010751... http://www.kip.uni-heidelberg.de/AG_Cremer/pdf-fil...